Fundamental Concepts on the use of a Basic Dimension: Positional Tolerancing (GD&T)

Gregory S. Gay
Aero-Motive Company
A Woodhead Industries, Inc. Subsidiary
Kalamazoo, MI

ANSI/ASME Y 14.5M - 1994 Dimensioning and Tolerancing

revision of

ANSI Y 14.5M - 1982 Both are in current use

Geometric Dimensioning & Tolerancing

Basic Dimensions

Positional Tolerancing &

Tolerance Zones they locate

Basic Dimensions

Have No Tolerance

Locate Tolerance Zones

A dimension that is considered theoretically perfect.

Used to describe the theoretically exact size, profile, orientation, or location of a feature or datum target.

Basic Dimensions verses Conventional Dimensioning

No plus and minus next to the dimension

Placed in a rectangle

Basic Dimensions verses Conventional Dimensioning

- Identified by general note
 - Untoleranced dimensions locating true position are basic

Locates associated tolerance zone

Basic Dimension

Describes a theoretically exact location

Where the associated tolerance zone is located

Feature Control Frame Tolerance Zone

The associated tolerance zone is found in the feature control frame

Feature Control Frame

- True Position
- Zone Descriptor
- Tolerance
- Datums

Feature Control Frame

Axis of feature must remain in zone

0.7mm is total width of zone

Not a plus & minus tolerance

Zone is located at basic

Feature Control Frame

The feature control frame is located under the size dimension

Positional Tolerance

Conventional Tolerance

Conventional Tolerance

Shape of the zone is square

Conventional Tolerance

Axis of feature must remain within zone

Positional Tolerance Circumscribed about Conventional Tolerance

1 --- Max deviation in x and y

2 --- Max deviation in x
No deviation in y

Both locations will allow parts to be bolted together.

57% more area with positional tolerance

Point 1 x 0.25mm y 0.25mm

Point 2 x 0.35mm y 0.00mm

Formula $2\sqrt{x^2 + y^2}$

x & y absolute positive difference between the measured location & the basic dimension

Actual at 12.25mm or 11.75mm

Use positive 0.25mm in calculations

Basic 12.00 mm Actual location

x 12.25mm

y 12.25mm

$$2\sqrt{.25^2 + .25^2} = .7$$

- in tolerance ----- equal or smaller
 - Axis of feature is at or inside zone

- out of tolerance ---- larger
 - Axis of feature is outside of zone

Positional Tolerance

Summary Basic Dimensions

Locate Tolerance Zones

Theoretically Perfect

Have No Tolerance

- Conventional
 - Square shape

- Positional
 - Round shape
 - 57% more area

Summary Tolerance Calculations

Use absolute, positive difference

Basic Dimension at 12.00mm

Actual at 12.25mm or 11.75mm

Use positive 0.25mm in calculations